CHROM. 16,061

Note

Enantiomer separation of polyols and amines by enantioselective gas chromatography

WILFRIED A. KÖNIG* and INGRID BENECKE

Institut für Organische Chemie und Biochemie der Universität, D-2000 Hamburg 13 (F.R.G.) (Received June 14th, 1983)

Polymers of the polysiloxane type can be modified to yield highly enantioselective chiral stationary phases for capillary gas chromatography $(GC)^{1-4}$. After formation of suitable derivatives, enantiomeric mixtures of a large number of compound classes have been separated⁵. Chiral polymers derived from XE-60 by hydrolysis of the cyano groups in the side chains and by chemical binding of L-valine-(S)- or (R)- α -phenylethylamide can be used for the separation of amino acids³, amino alcohols⁶, α - and β -hydroxy acids^{7,8}, N-methylamino acids⁸, chiral alcohols⁹, amines⁷, ketones¹⁰, pentoses¹¹ and hexoses^{6,12,13}.

This work describes the enantiomer separation of trifluoroacetylated polyols, which have never been separated before, and an improved separation of trifluoro-acetylated amines.

EXPERIMENTAL

Materials

D- and L-arabinitol were obtained from P-L Biochemicals (Milwaukee, WI, U.S.A.), D-mannitol from E. Merck (Darmstadt, F.R.G.). L-Mannitol and D- and L-fucitol were prepared by reduction of the corresponding sugars with $NaBH_4$ in methanol solution. The secondary amines used in this investigation are all commercially available.

Formation of derivatives

The fully trifluoroacetylated derivatives of polyols were prepared by heating a 100- μ g sample in 200 μ l of dichloromethane and 100 μ l of trifluoroacetic anhydride for 20 min at 100°C in Wheaton Micro Vials (Wheaton Scientific, Millville, NJ, U.S.A.). After removal of excess of reagent in a stream of dry nitrogen, the derivatives were dissolved in 200 μ l benzene and used for GC.

Gas chromatography

XE-60-L-valine-(S)- α -phenylethylamide and the diastereoisomeric (R)- α -phenylethylamide were prepared as described earlier⁴. Fused-silica capillary columns with these phases were supplied by Chrompack (Middelburg, The Netherlands). Glass capillary columns were prepared as described previously¹⁴. A Carlo Erba Model 2101 gas chromatograph with hydrogen as carrier gas was used.

RESULTS AND DISCUSSION

Polyols are widespread natural compounds derived from aldoses or ketoses by reduction. In some cases (ribitol, xylitol, galactitol), chirality is lost upon reduction and a symmetrical polyol is formed. Arabinitol and mannitol, however, are optically active and the separation of the enantiomers may be of interest. D-Arabinitol has recently been identified as a metabolite of Candida albicans and Candida tropicalis in leukaemia patients with fungal septicaemia¹⁵. The enantiomers of most of the common pentose and hexose isomers have been separated as trifluoroacetylated derivatives or trifluoroacetylated methyl glycosides^{6,11-13}. This is a relatively rare case of chiral recognition with nitrogen-free compounds, because enantioselectivity has mainly been attritubed to the formation of association complexes caused by hydrogen bonding. Other effects, for instance dipole-dipole interaction¹⁶ or the rigidity of the cyclic carbohydrate structures, may also contribute to enantioselectivity. However, the separation of some trifluoroacetylated polyols as shown in Figs. 1 and 2 clearly demonstrates that cyclic structures are not necessary for chiral recognition. As in the case of carbohydrates, trimethylsilylated polyols are not separated; the acyl residues seem to be essential.

The complementary properties of the two phases XE-60-L-valine-(S)- α -phenylethylamide and its diastereomer XE-60-L-valine-(R)- α -phenylethylamide are not only of advantage for the separation of polyols and carbohydrates. The (R)-phase also

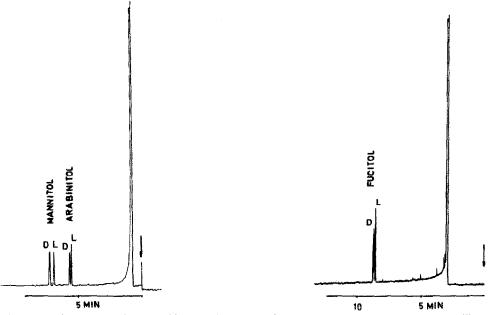


Fig. 1. Enantiomer separation of arabinitol and mannitol trifluoroacetates on a 15-m Pyrex glass capillary column coated with XE-60-L-valine-(R)- α -phenylethylamide. Column temperature: 145°C. Carrier gas: 0.7 bar hydrogen.

Fig. 2. Enantiomer separation of fucitol (6-deoxygalactitol) trifluoroacetate on a 50-m fused-silica capillary column coated with XE-60-L-valine-(S)- α -phenylethylamide (Chrompack). Column temperature: 140°C. Carrier gas: 1.2 bar hydrogen.

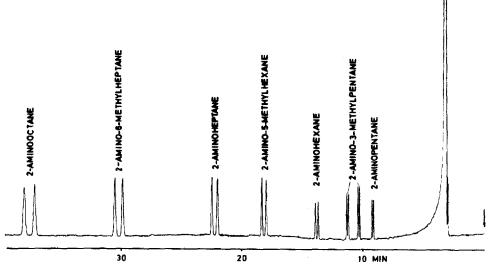


Fig. 3. Enantiomer separation of chiral amines as trifluoroacetyl derivatives on a 50-m fused-silica capillary column coated with XE-60-L-valine-(R)- α -phenylethylamide. Column temperature: 120°C. Carrier gas: 1.2 bar hydrogen.

displays high enantioselectivity for trifluoroacetylated amino alcohols⁶ and chiral amines as shown in Fig. 3. The separation factors of 1.01-1.025 are sufficient for baseline separation. The (*R*)-enantiomers are eluted first. An equivalent separation of amines has recently been obtained on the (*S*)-phase after the formation of isopropylureido derivatives⁷, but the higher volatility of trifluoroacetyl derivatives may be more convenient in practice.

ACKNOWLEDGEMENTS

This work was supported by Deutsche Forschungsgemeinschaft and Fonds der Chemischer Industrie.

REFERENCES

- 1 T. Saeed, P. Sandra and M. Verzele, J. Chromatogr., 186 (1979) 611.
- 2 T. Saeed, P. Sandra and M. Verzele, J. High Resolut. Chromatogr. Chromatogr. Commun., 3 (1980) 35.
- 3 W. A. König and I. Benecke, J. Chromatogr., 209 (1981) 91.
- 4 W. A. König, S. Sievers and I. Benecke, in R. E. Kaiser (Editor), Proc. IVth Inter. Symp. Capillary Chromatogr., Institute for Chromatography, Bad Dürkheim, and Hüthig, Heidelberg, 1981, p. 703.
- 5 W. A. König, J. High Resolut. Chromatogr. Chromatogr. Commun., 5 (1982) 588.
- 6 W. A. König, I. Benecke and S. Sievers, J. Chromatogr., 217 (1981) 71.
- 7 W. A. König, I. Benecke and S. Sievers, J. Chromatogr., 238 (1982) 427.
- 8 W. A. König, I. Benecke, N. Lucht, E. Schmidt, J. Schulze and S. Sievers, J. Chromatogr., 279 (1983) in press.
- 9 W. A. König, W. Francke and I. Benecke, J. Chromatogr., 239 (1982) 227.
- 10 W. A. König, I. Benecke and K. Ernst, J. Chromatogr., 253 (1982) 267.
- 11 I. Benecke, E. Schmidt and W. A. König, J. High Resolut. Chromatogr. Chromatogr. Commun., 4 (1981) 553.
- 12 W. A. König, I. Benecke and H. Bretting, Angew. Chem., 93 (1981) 688.
- 13 W. A. König, I. Benecke and H. Bretting, Angew. Chem., Int. Ed. Engl., 20 (1981) 693.
- 14 W. A. König, K. Stölting and K. Kruse, Chromatographia, 10 (1977) 444.
- 15 J. Roboz, R. Suzuki and J. F. Holland, J. Clin. Microbiol., 12 (1980) 594.
- 16 K. Stölting and W. A. König, Chromatographia, 9 (1976) 331.